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Abstract: This study presents a robust digital beamforming (DBF) method for wideband digital array radar, which uses linear
frequency modulation (LFM) waveforms. Firstly, received signals are digitally dechirped, followed by narrowband filtering and
decimation. Then the authors generate time-variant factors to compensate phase perturbations induced by the dechirp
processing. It is proved that the wideband LFM signals can be treated as narrowband signals after compensation. Finally, a
robust adaptive narrowband DBF method based on uncertain set constraints and interference-plus-noise matrix reconstruction
is applied to suppress the interferences. The proposed method is computationally efficient and feasible for real-time
applications. It behaves robustly in the presence of direction of arrival estimation errors across a wide range of signal-to-noise
ratios. Simulations demonstrate the effectiveness and feasibility of the proposed method.

1 Introduction
Wideband digital array radar (WDAR) has the potential of
achieving high resolution and dynamic range. Moreover, it can be
configured to different working-modes to perform different
functions for various purposes, such as target detection, tracking,
imaging, recognition and signal reconnaissance. In the last decade,
with the development of array signal processing [1], WDAR has
been widely used in radio astronomy, space surveillance and
communications [2].

As one of the key technologies in array signal processing,
digital beamforming (DBF) has attracted much attention [3]. An
adaptive DBF approach based on genetic algorithm is proposed in
[4], which is suitable for real-time control of antenna arrays.
However, most previous DBF algorithms may suffer from severe
performance degradation when model mismatches exist. As a
result, many robust adaptive wideband DBF algorithms have been
proposed to deal with the problem. Diagonal loading of the
correlation matrix is a popular technique to increase the robustness
of array systems [5]. However, the selection of the loading level is
a crucial problem. To overcome the difficulties, a new variable
loading technique, which combines the features of variable optimal
loading and general linear combination, is developed in [6].
Another kind of robust beamformer is proposed in [7, 8]. It
guarantees the robustness against steering vector mismatches using
probability constraints. A wideband robust DBF method based on
frequency invariance constraints is proposed in [9]. This method
incorporates a response variation element into the robust linearly
constrained minimum variance beamformer to control the
consistency of the responses over the frequency range.

The requirement for high resolution results in a large
bandwidth. As a result, the traditional wideband DBF algorithms
suffer from high computational complexity. In addition, it may
have higher requirements for transmission and storage devices
owing to high data rate, which results in greater difficulty in
realisation. In order to address the problems, dechirp technology
[10] is widely applied in wideband radar, leading to the study of
DBF algorithms based on the dechirp processing. In [11], a post-
dechirp canceller is performed in both the time domain and
frequency domain, which is useful to null sidelobe interferences
over extremely large bandwidth. Rabideau from MIT Lincoln

laboratory analysed the impact of two basic adaptive beamforming
approaches on the time sidelobes of WDAR utilising dechirp
processing and verified their performances using measured data
[12]. However, these approaches are still based on wideband DBF
architectures. A dechirp-based method is proposed in [13] which
combines the wideband phase compensation weights and
narrowband weights to produce the optimal weights. This method
is computationally efficient, but it requires to know the directions
of the interferences. To cope with the problems, several improved
methods are developed, which make use of minimum variance
distortionless response (MVDR) to null interferences adaptively
[14, 15]. However, these methods assume that the direction of
arrival (DOA) of the signal of interest (SOI) is precisely known,
but the information may not be available in practice.

The aforementioned methods are based on the analogue dechirp
processing. Since the reference signals are generated by analogue
devices, distortions may be induced to array systems [16].
Recently, a digital dechirp technique is developed in [17], which
has the same advantages as analogue dechirp but does not induce
such distortions.

In this paper, we propose a digital dechirp-based DBF method
for WDAR. It is shown that the digital dechirp processing will
induce time-variant phase perturbations to the SOI. Hence time-
variant factors are generated to compensate the perturbations. In
this way, the wideband SOI can be treated as a narrowband signal.
Then we prove that the steering vector of the SOI belongs to an
uncertain set in the presence of direction estimation errors.
Consequently, an adaptive narrowband DBF approach is applied to
increase the robustness of the beamformer. The proposed method
performs beamforming on wideband linear frequency modulation
(LFM) signals simply by combining the time-variant compensation
and the narrowband beamforming. It has much lower
computational complexity than traditional wideband DBF methods.

The remaining of this paper is organised as follows. In Section
2, the signal models based on digital dechirp are demonstrated.
Section 3 presents a robust adaptive DBF method applied to the
dechirped signals. Simulation results are illustrated in Section 4,
followed by the conclusion in Section 5.

IET Radar Sonar Navig., 2019, Vol. 13 Iss. 2, pp. 283-289
© The Institution of Engineering and Technology 2018

283

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html



2 Problem formulation
In a WDAR, the transmitted LFM waveform can be expressed as

s(t) = cos 2π f 0t + 1
2 μt2 ⋅ rect t

T0
(1)

where f 0 is the carrier frequency, μ is the chirp rate, and T0 is the
pulse width. The bandwidth is B = μT0. rect(x) = 1 when
−(1/2) ≤ x ≤ (1/2), otherwise, rect(x) = 0.

Suppose the receiving antenna of the WDAR is an N-element
wideband uniform linear array (ULA) with inter-element spacing d.
Assume that the target is located at the direction of θs with a
distance from the first element denoted by Rs. For a moving target,
the Doppler effect is equivalent to a change to in time scale [18].
Unlike traditional analogue dechirp-based radar, WDAR systems
usually have high-rate ADCs, which is able to sample radio-
frequency echoes directly without any intermediate-frequency
steps according to the band-pass sampling theory. As a result,
demodulation and dechirp can be performed in the digital domain.
After direct sampling and demodulating, the received signal in the
kth element is

xk
(1)(n) = ρsexp j2π f 0β(nTs − ts − τk)

+ 1
2 μβ2(nTs − ts − τk)2

⋅ rect β(nTs − ts − τk)
T0

+ Ik
(1)(nTs)

(2)

where ts = 2Rs/c and τk = (k − 1) d sin θs/c, β = (c − v)/(c + v) is the
Doppler factor. v is the relative velocity between the target and the
WDAR, and c is the speed of light. ρs denotes the amplitude of the
SOI. Ts is the sampling interval. Ik

(1)(nTs) contains the
interferences and the noise. In this paper, the noise is assumed to be
Gaussian white noise.

The basic ideal of digital dechirp [17] is mixing the received
signal with a reference signal. In order to generate the reference
signals, the distance and the velocity of the target must be obtained.
Generally, the WDAR has multi-functions and works in multi-
modes. For example, the narrowband mode is mainly used for
target detection and tracking, while the wideband mode is used for
imaging. The two modes are usually used alternatively. Therefore,
Rs and v can be estimated by Multiple Signal Classification method
in [19] when the WDAR works in the narrowband mode. Denoting
the estimated distance and velocity as Rr and v^, the reference signal
is set as [20]

sr(n) = exp j2π f 0β
^(nTs − tr) + 1

2 μβ
^2

(nTs − tr)2

⋅ rect β
^(nTs − tr)

Tr

(3)

where tr = (2Rr/c) and β
^ = (c − v^)/(c + v^). Tr denotes the pulse

width of the reference signal pertaining to Tr > T0.
Substituting (2) with (3) yields the dechirped signal

xk
(2)(n) = ρsexp j2π f 0(β − β

^)nTs + 1
2 μ β2 − β

^2
n2Ts

2

+μ β
^2

tr − β2ts nTs + f 0tΔ + 1
2 μ β2ts2 − β

^2
tr2

⋅ exp j2π −μβ2τknTs − f 0βτk + μβ2tsτk + 1
2 μβ2τk

2

⋅ rect β(nTs − ts − τk)
T0

+ Ik
(2)(nTs)

(4)

where tΔ = β
^
tr − βts and Ik

(2)(nTs) = Ik
(1)(nTs) ⋅ sr*(nTs).

It is noted that the SOI is approximately transformed into a tone
by digital dechirp. The bandwidth of the dechirped SOI, denoted as

Bdc, is mainly determined by the relative distance between tr and ts.
If we add a narrowband filter with the bandwidth Bp ≥ Bdc after the
digital dechirp processing, the SOI will not be affected by the filter.
Since Bp is usually much narrower than B, a decimator can be
inserted following the filter. Therefore, by applying the
narrowband filter and the decimator to (4), the signal becomes

xk
(3)(n) = ρsexp j2π f 0 β − β

^
nTs′ + 1

2 μ β2 − β
^2

n2Ts
′2

+μ β
^2

tr − β2ts nTs′ + f 0tΔ + 1
2 μ β2ts2 − β

^2
tr2

⋅ exp j2π −μβ2τknTs′ − f 0βτk + μβ2tsτk + 1
2 μβ2τk

2

⋅ rect β nTs′ − ts − τk
T0

+ Ik
(3) nTs′

(5)

where D denotes the decimation factor and Ts′ = DTs. Ik
(3)(nDTs) is

obtained by applying the filter and decimator to Ik
(2)(nTs).

Here we denote the aforementioned steps as pre-processing,
including direct sampling, demodulation, digital dechirping,
narrowband filtering and decimation. It can be seen that the data
rate of the pre-processed signal in (5) is decreased by a factor of D
compared with that in (2). As a result, there will be a significant
reduction in the requirements for the transmission and storage
devices. Moreover, the interferences and noise Ik

(2)(nTs) will be
filtered if their power is out of the pass-band Bp.

In [21–23], a method via a judiciously designed spatial
transformation followed by a bank of highpass filters has been
proposed to mitigate the effect of white noise without affecting the
directional signals in wideband arbitrary linear arrays. With this
method, a maximum 3 dB improvement in total power-to-total-
noise-power ratio (TSNR) can be achieved in the ideal case, but the
amount of calculation has been greatly increased. Compared with
this method, the proposed method that performs beamforming after
dechirping may greatly reduce the amount of calculation and is
evidently more effective in realisation.

Due to the effects of pre-processing, the signals in (5) have
different forms with traditional wideband signals. In the next
section, we devote to find a DBF method which can be applied to
the signals (5).

3 Robust adaptive DBF method applied to
dechirped signals
3.1 Time-variant compensation

Equation (5) can be written in the form of

xk
(3)(n) = Hs(n)exp( − j2π f 0βτk)gk(n)

⋅ rect β nTs′ − ts − τk
T0

+ Ik
(3)(n)

(6)

where Hs(n) and gk(n) are

Hs(n) = ρsexp j2π f 0 β − β
^

nTs′ + 1
2 μ β2 − β

^2
n2Ts

′2

+μ β
^2

tr − β2ts nTs′ + f 0tΔ

+ 1
2 μ β2ts2 − β

^2
tr2

gk(n) = exp j2π −μβ2nTs′τk + μβ2tsτk + 1
2 μβ2τk

2

(7)

As seen from (6), Hs(n) is independent of τk and is identical for all
elements. It has, therefore, no effect on DBF. The term
exp( − j2π f 0βτk) has the same form as the steering vector of
narrowband signals, which can be compensated by narrowband
DBF methods. However, gk(n) is a function of τk and varies with
the time. As a result, it is difficult to be compensated only by
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narrowband weights and may deteriorate the performance of
narrowband DBF algorithms seriously. Therefore, it is necessary to
compensate the time-variant term in each element before applying
narrowband DBF algorithms.

It is noted that the direction θs, the distance Rs and the velocity
v, corresponding to τk, ts and β, may not be known precisely. Hence
it is difficult to obtain the accurate value of gk(n). Fortunately, θs,
Rs and v can be estimated when the WDAR works in the
narrowband mode. Denoting the estimation of θs as θ̄s, the time-
variant compensation factor for the kth element can be selected as

uk(n) = exp j2π −μβ′2nTs′τ̄k + μβ′2trτ̄k + 1
2 μβ′2τ̄k

2 (8)

where τ̄k = (k − 1)dsin θ̄s/c. Here we use tr as an estimation of ts.
By compensating (6) with (8), we obtain

xk
(4)(n) = xk

(3)(n) ⋅ uk*(n)
≈ Hs(n) ⋅ exp −j2π f 0βτk exp(j2πΔϕk(n))

⋅ rect β(nTs − ts)
T0

+ Ik
(4)(n)

(9)

where Ik
(4)(n) = Ik

(3)(n) ⋅ uk*(n). The residual time-variant phase is

Δϕk(n) = μβ2 nTs′ − ts Δτk

−μβ2Δtτ̄k + 1
2 μβ2 τk

2 − τ̄k
2

+μ β′2 − β2 nTs′ − tr − 1
2 τ̄k τ̄k

(10)

where Δτk = τ̄k − τk and Δt = tr − ts.
Generally, the pulse width T0 is usually tens of microseconds,

corresponding to a distance of thousands of metres. Compared with
this distance, the distance estimation error ΔR = Rr − Rs and the
inner-element space d are considerably small, so we have Δt ≪ T0,
Δτk ≪ T0.Noting that μT0 < f 0, we can obtain
μβ2τ̄kΔt ≃ μβ2τkΔt ≪ f 0βτk  and
(1/2)μβ2 τk

2 − τ̄k
2 ≃ μΔτkβ2τk ≪ f 0βτk , so the second and the

third terms in (10) can be ignored. In addition, the velocity v is
usually much smaller than the speed of the light, leading to
β′2 − β2 ≃ 0. Correspondingly, the last item can also be ignored.
Therefore, the residual time-variant phase is approximately equal
to

Δϕk(n) ≃ μβ2 nTs′ − ts Δτk (11)

Consequently, (9) can be expressed as

xk
(4)(n) ≃ Hs(n) ⋅ exp −j2π f 0β τk − Δϕk(n)

β f 0

⋅ rect β nTs′ − ts
T0

+ Ik
(4)(n)

(12)

In (12), we have (Δϕk(n)/(β f 0)) = μβ nTs′ − ts Δτk /( f 0) < Δτk.
Therefore, the perturbation on τk mainly depends on Δτk, which is
usually very small. As a result, the SOI after time-variant
compensation can be treated as a narrowband signal with a small
perturbation on the time delay. Subsequently, it is possible to apply
narrowband DBF algorithms.

3.2 Robust adaptive narrowband DBF algorithm

According to (12), the signals after time-variant compensation can
be written in the vector form as

x(n) = Hs(n)rect β nTs′ − ts
T0

⋅ as + I(n) (13)

where

x(n) = x1
(4)(n), x2

(4)(n), …, xN
(4)(n) T

I(n) = I1
(4)(n), I2

(4)(n), …, IN
(4)(n) T (14)

as ∈ ℂN × 1 denotes the actual steering vector of the SOI defined as

as = exp − j2π f 0β τ1 − Δϕ1(n)
β f 0

,

exp −j2π f 0β τ2 − Δϕ2(n)
β f 0

, …,

exp − j2π f 0β τN − ΔϕN(n)
β f 0

T

(15)

The presumed steering vector is
ās = exp −j2π f 0β

^
τ̄1 , exp −j2π f 0β

^
τ̄2 , …, exp −j2π f 0β

^
τ̄N

T
.

Therefore, the mismatch between the actual steering vector and the
presumed one can be obtained as

ae = as − ās (16)

Considering that −(T0/2) ≤ nTs′ − ts ≤ (T0/2), for k = 1, 2, …, N,
we have

ae(k) 2 ≃ exp − j2π f 0τ̄k

⋅ exp j2π f 0β + μβ2 nTs′ − ts Δτk − 1 2

≤ max 2 − 2cos 2π f 0β + 1
2 μβ2T0 Δτk ,

2 − 2cos 2π f 0β − 1
2 μβ2T0 Δτk ≜ εk

(17)

Given the bound of estimation errors of θs, we can obtain the
bound of Δτk. Subsequently, εk can be calculated according to (17).
Therefore, the actual steering vector as belongs to the following
uncertainty set

Ω ≜ as ∥ as − ās ∥F
2 ≤ ε0 (18)

where ε0 = ∑k = 1
N εk. ⋅ F denotes the Frobenius norm.

As can be seen from (13) and (18), the SOI has the same form
of a narrowband signal, except that the actual steering vector
belongs to the uncertainty set Ω. Based on the sample matrix
inversion algorithm in [24] and the WCPO algorithm in [25], the
formulation of adaptive beamformer can be written as the
following constrained minimisation problem:

min
w

wHRxw

s . t . wHas ≥ 1, for∥ as − ās ∥2 ≤ ε0

(19)

where Rx = (1/K)∑n = 1
K x(n)xH(n). K denotes the number of

snapshots.
The beamformer in (19) is, in essence, the minimum power

distortionless response (MPDR) beamformer, since Rx is calculated
using the training samples which contain the SOI. However, it is
well known that the MPDR beamformer is sensitive to steering
vector mismatches, which are inevitable whenever DOA estimation
errors exist. Moreover, the performance of the beamformer will
degrade seriously at high signal-to-noise ratios (SNRs) owing to
the fact that the SOI is present at the training samples. In order to
improve the robustness, we reconstruct the interference-plus-noise
covariance (INC) matrix.

Suppose the angle sector in which the SOI is located is
Θ = [θL, θH]. The width of Θ is determined by the DOA estimation
resolution of the array system. The main requirement is that the
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SOI is located in Θ while the interferences are not. The INC matrix
can be reconstructed as [26, 27]

Ri + n = ∫
Θ̄

b(θ)bH(θ)
bH(θ)Rx

−1b(θ)
dθ (20)

where
b(θ) = [1, exp( − j2π f 0βdsin θ /c), …, exp( − j2π f 0β(N − 1)dsin
θ /c)]T

.

Θ̄ = [ − 90°, θL] ∪ [θH, 90°] is the complimentary sector of Θ.
By replacing Rx with Ri + n, the problem in (19) becomes

min
w

wHRi + nw

s . t . wHas ≥ 1, for ∥ as − ās ∥2 ≤ ε0

(21)

The problem in (21) belongs to the category of adaptive DBF
algorithm constrained by an uncertain set. As a result, it is capable
to obtain the solution using the method in [28] as follows:

w = (Ri + n + λI)−1ās

ās
H(Ri + n + λI)−1Ri + n(Ri + n + λI)−1ās

(22)

where λ is the diagonal loading factor, which can be calculated by
Newton's method.

Finally, the output of the beamformer can be obtained by
applying the narrowband weights w to (13)

y(n = wHx(n) (23)

In summary, the proposed method is carried out by three steps: pre-
processing, time-variant compensation followed by narrowband
beamforming, as shown in Fig. 1. It is worth mentioning that the
data rate is decreased by a factor of D after pre-processing. It is
effective to reduce the burdens of computation, transmission and
storage in the subsequent processing. Moreover, the proposed
method only calculates the narrowband weights at f 0, instead of
those at a set of frequency bins. Therefore, the proposed method
has a much lower computational complexity compared with
traditional wideband DBF algorithms. 

4 Numerical assessment
In this section, several representative simulations are carried out to
demonstrate the performance of the proposed method.

Consider a wideband monopole antenna array with N = 16
elements arranged uniformly on a line. The operation frequency is
[2.45, 2.95 GHz]. With the purpose of avoiding grating lobes, the
distance between neighbouring elements is set as d = 0.05 m,
which is about the half wavelength of the highest frequency. The
signals are directly sampled by an analogue-to-digital converter
(ADC) at a rate of 1.2 Gsps.

In the first simulation, the transmitted signal is modeled as an
LFM signal with the bandwidth of B = 400 MHz at a center
frequency of 2.7 GHz. The pulse width is T0 = 25 μs and the range
window is set as ΔRmax = 100m. The target is located at 20 m away

from the reference distance at the direction of −15°. The presumed
direction is −16° with the estimation error as 1°. The target moves
with a velocity of v0 = 5000 m/s with respect to the radar, while the
estimation of the velocity is v~ = 4900 m/s. There are two
interferences with the same frequency band impinging on the array
from 10° and 35°, respectively. Without loss of generality, the
interferences have arbitrary waveforms, which are produced using
the ‘randn’ function in MATLAB followed by band-pass filters.
The SNR is set as −5 dB and the INR is set as 20 and 20 dB.

It is noted that the complex sampling rate after demodulation is
600 Msps. Suppose the output bit width is 16bits, the data rate of
the received signal is 600 Msps*16 bits = 9.6 Gbps, which is
relatively high for transmitting. Considering the bandwidth of the
dechirped SOI is limited to
Bdc = (B/T0) ⋅ (2ΔRmax/c) = 10.66 MHz, the pass-band of the
narrowband filter is set as Bp = 12 MHz, followed by a decimator
with a factor of D = 32. Therefore, after the decimation, the data
rate is only 9.6 Gsps/32 = 300 Mbps, which is reduced
significantly. Moreover, the interferences which spread their
spectrums out of Bp are filtered, as shown in Fig. 2a. However, the
SOI is still not available since the interferences within Bp are
preserved by the bandpass filter. Fig. 2b shows the beam pattern.
The pulse compression of the output signal is shown in Fig. 2c.
The spectrum of the interferences is suppressed to lower than
10 dB, and subsequently, the peak of the SOI can be recognised. 

Fig. 3 shows the output SINR versus different SNR varying
from − 10 to 20 dB. We run 200 Monte Carlo trials for each
condition in the simulations unless specially mentioned. In
comparison, we also illustrate the results of the previous dechirp-
based DBF method in [14], the wideband robust frequency
invariant worst-case (RB-FI-WC) DBF method in [9]. The optimal
SINR is also given for comparison, which is obtained in ideal
conditions. In [14], the diagonal loading level is set as 10 dB with
respect to the white noise level, and the notch width is set as 0.05.
In [9], the number of delay-taps is set as 20, and the MATLAB tool
box ‘CVX’ is used to find the solutions of optimal problems. In the
proposed method, the angle sector of the SOI is set as
Θ = [ − 20°, − 10°]. As seen from the figure, the performance of
the proposed method is close to the optimal SINR over a large
range from − 10 to 20 dB. However, the performance of the method
in [14] is deteriorated seriously at high SNR due to the effects of
the SOI. The method in [9] also suffers from performance
degradation at high SNR. 

Setting the SNR as 5 dB while keeping other conditions
unchanged, we run each of the three methods for 200 times. All the
simulations are taken by the MATLAB R2014a platform on a
computer with Inter Core i5–2320 CPU. The time cost of each
method is illustrated in Table 1. As seen from the table, the total
time cost of the three methods is 6369.0, 136.1, 157.5 s,
respectively. The method in [9] is very time-consuming because it
deals with the wideband signals using the CVX tools. In
comparison, the other two methods, which conduct DBF after
dechirp, are much more computationally efficient and may be more
suitable candidates for real-time applications. It is noted that the
proposed method requires slightly more time than that of the
method in [14] due to the reconstruction of the INC matrix. 

We investigate the robustness of the proposed method in terms
of the output SINR versus the DOA estimation errors, as illustrated
in Fig. 4. Obviously, the method in [14] suffers from serious
performance degradation with large DOA estimation errors, while
both the proposed method and the method in [9] behave robustly.
Our method is more effective in coping with the DOA estimation
errors since it reaches a higher SINR. 

The effects of the velocity estimation errors are shown in Fig. 5,
where the SNR and the DOA estimation error are set as 5 dB and
1°. As we can see, with the increase of the velocity estimation
errors, the output SINR of the three methods almost maintains the
same. That means the output SINRs of these DBF methods are not
sensitive to velocity estimation errors. 

The interferences in the first simulation have random
waveforms which spread their power throughout the whole band
after dechirp. In the second simulation, we are concerned about

Fig. 1  Block diagram of the proposed algorithm
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some special cases such as active interferences. Under these
situations, the power of the dechirped interferences distributes
within the pass-band of the narrowband filter.

The setups are kept the same as the first simulation except that
the interferences have the same LFM waveform as the SOI. The
two interferences are located at − 30 and 40 m away from the
reference distance, respectively. The pulse compression results are
shown in Fig. 6. As we can see, the peak of the SOI, located at
20 m, is about 49 dB. However, the peaks of the interferences,
located at −30 and 40 m, is about 70 dB. As a result, the
interferences may be mistaken as the target. Fig. 6b shows the
beam pattern of the proposed algorithm, the gain at the directions
of the interferences is 60 dB lower than that at the direction of the
SOI. In Fig. 6c, the interferences are suppressed to about 10 dB by
the beamformer, while the SOI is preserved as before. 

The statistic performance of the proposed method is evaluated
in the presence of the LFM interferences. The output SINR versus
input SNR and DOA estimation errors are depicted in Figs. 7 and
8, respectively. The proposed method reaches a higher SINR than
other methods under the same condition. The results show that the
proposed method has a good performance on suppressing the
interferences with the same waveform as the SOI. 

5 Conclusion
An adaptive DBF method for WDAR is proposed based on the
digital dechirp processing. By employing time-variant
compensation factors, the wideband LFM signals are transformed

Fig. 2  Pulse compression results
(a) Signal in the first element after pre-processing, (b) Beam pattern, (c) Output of the
beamformer

 

Fig. 3  Output SINR versus input SNR with the DOA estimation error of 1°
 

Table 1 Time cost of 200 Monte-Carlo runs
Methods Method in [9] Method in [14] Proposed method
time cost, s 6369.0 136.1 157.5

 

Fig. 4  Output SINR versus DOA estimation errors with an SNR of 5 dB
 

Fig. 5  Output SINR versus velocity estimation errors with an SNR of 5 dB
and the DOA estimation error of 1°
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into narrowband signals with small perturbations on the steering
vector. Subsequently, a narrowband DBF method that combines
uncertain set constraints and INC matrix reconstruction approaches
are applied. The proposed method behaves robustly in the presence
of the DOA and distance estimation errors. It is computationally
efficient and a good candidate for real-time applications. The
effectiveness of the proposed method is verified by simulations.
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